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Thermal convection in a Hele-Shaw cell 
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We derive the Rayleigh number R, for thermal convection in a Hele-Shaw cell 
with gap width d and full width (gap plus walls) Y .  For the state of marginal 
stability, the system of equations is found to be formally identical to that des- 
cribing flow through a uniform porous medium, if d3/12Y is identified as the 
Hele-Shaw permeability. Thus Lapwood’s (1 948) thermal-instability analysis 
should apply, and the critical Rayleigh number should be 4n2 when the cell has 
impermeable isothermal boundaries. 

Baker’s (1966) pH-indicator method for visualizing fluid flow has been adapted 
for use in a Hele-Shaw cell. In  addition to revealing the convection pattern 
clearly, this technique proves to be an especially sensitive detector of incipient 
flow, and a highly accurate means of verifying the onset of convection. Our 
experiments confirm that the critical Hele-Shaw Rayleigh number is 40 5 2, 
thereby validating our theoretically derived expression for the Rayleigh number. 
We also measure the vertical flow velocity w, and find that w, cc (RLS - 402)t 
closely fits our data for 40 < RHS < 140. 

1. Introduction 
DeveIopment of geothermal power resources has increased general interest in 

the properties of convection in porous media. The scientific importance of the 
field has also been enhanced by the discovery that hydrothermal circulation is the 
dominant heat-transfer mechanism in young oceanic crust (Lister 1972). How 
far hydrothermal circulation penetrates into the earth is a fundamental para- 
meter of natural systems. Estimates of circulation depth can be made only with 
an understanding of the aspect ratios that convection cells will tolerate and the 
amount of environmental forcing needed to distort them from their natural 
shape. Laboratory techniques that allow the flow in the Convection cells to be 
visualized are very important for such investigations. 

One type of laboratory apparatus lends itself especially well to the study of 
two-dimensional convection patterns. It exploits the mathematical similarity, 
first noted by Hele-Shaw (1898), between slow two-dimensional flow in a uni- 
formly porous medium and laminar flow in a narrow slot sandwiched between 
parallel walls. If the walls of this ‘Hele-Shaw cell’ are transparent, the flow 
pattern can be observed by using strioscopy, shadowgraphs, schlieren photo- 
graphy, interferometry, or the pH-indicator method we describe in this paper. 
The last method is an especially sensitive detector of incipient flow and a highly 
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accurate way of verifying the onset of convection. Results from Hele-Shaw cell 
experiments are of general applicability because incipient thermal instability in a 
porous medium is two-dimensional, and roll convection persists to a Rayleigh 
number nearly ten times the critical value (Straus 1974). 

True porous media are inherently heterogeneous on the scale of the pores and 
channels. To describe local flow, details of the channel geometry, spacing, and 
tortuosity are needed. A better approach for dealing with macroscopic natural 
phenomena treats a block of porous material as a ‘black box’ which passes 
fluid in response to a pressure gradient. In  low Reynolds number flow, where the 
pressure-flow relationship is linear, a permeability can be defined for any mat- 
erial that is uniformly porous on a scale substantially larger than the channel 
separation (Darcy 1856). The permeability is a parameter characteristic of the 
matrix and allows the calculation of the flow through the porous material, solid 
as well as pores, per unit cross-section. A Hele-Shaw cell is a fundamental element 
of a cracked porous medium; in any phenomenon (such as the development of 
salt fingers) where the presence of the walls is immaterial to the flow, the permea- 
bility can be treated as simply the permeability of the slot. In  porous convection, 
however, thermal conduction through the whole porous medium enters into the 
derivation of the Rayleigh number. The walls of the Hele-Shaw cell conduct heat; 
therefore their presence must be taken into account in deriving the Rayleigh 
number of such a cell. This paper derives the correct Rayleigh number for a thin 
Hele-Shaw cell, and experimentally verifies that the onset of convection occurs 
a t  a Rayleigh number equal to the theoretical prediction of 47r2 (Lapwood 1948), 
within the small experimental error. 

2. The Hele-Shaw Rayleigh number 
In  thermal convection experiments, the important non-dimensional parameter 

is the Rayleigh number, but prior workers with Hele-Shaw cells have not calcu- 
lated it correctly. Here we outline a rigorous mathematical derivation of the 
Hele-Shaw Rayleigh number R,, and demonstrate that it plays the same role as 
Lapwood’s (1  948) porous-medium Rayleigh number R. An independent but 
equivalent physical argument follows the mathematical section. 

Nathematical derivation 
In  general, the system of equations governing thermal convection has time- 
independent solutions near the state of marginal stability (Chandrasekhar 1961). 
Therefore, in our examination of the criteria for the onset of convection in a 
Hele-Shaw cell heated from below, we need consider only the steady-state, first- 
order perturbation equations. 

The cell dimensions and co-ordinate system are shown in figure 1. The steady- 
state, average perturbation velocity of laminar fluid flow in a planar channel of 
width d < H ,  L ( H  = cell height, L = cell length) is 

u’ = (-d2/12,u) (V’P’-p ,agO’f )  (1) 

(see Lamb 1932, 0 330). Here ,u is the dynamic viscosity of the fluid, po its density 
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FIQURE 1. Schematic cross-section of a Hele-Shaw cell showing the dimensions and co- 
ordinate system referred to in the text. The hatched regions represent the cell walls, and 
the dotted area is fluid filled. 

at a reference temperature, and a its volume thermal expansion coefficient. The 
perturbation pressure is P', g is the gravitational acceleration and 2 is the vertical 
unit vector, positive upwards. The temperature field T' is given by 

T' = TA +8', (2) 

where TA is the conductive temperature field, TA = (z'/H)'AT, and zt is the vertical 
co-ordinate. The Iaw of thermaI expansion, p, = po (1.- aT'), where p, is the 
fluid density, and the Boussinesq approximation have been incorporated in the 
second term on the right-hand side of (1). The primes indicate dimensional 
quantities which will be non-dimensionalized later. 

In a Hele-Shaw cell with full width (walls plus channel) Y < H ,  L, heat is 
conducted by the fluid and by the walls, but can be advected only by the fluid in 
the gap. Thus the steady, first-order perturbation temperature field obeys 

(3) 

The heat capacity of the fluid is c,, and the thermal conductivity k is appropriate 
to the total system, walls plus fluid. In  the sandwich geometry characteristic of a 
Hele-Shaw cell, when heat flows only parallel to the plane of the channel 

pf cf aut . VT;  = YFcvw. 
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where k, and kw are the thermal conductivities of the fluid and walls, respectively. 
To complete the mathematical description, we assume the fluid is incompressible 
and include the statement that matter is conserved: 

V' . u' = 0. (5) 

It is instructive to write ( l ) ,  ( 3 )  and (5) in dimensionless form by defining non- 
dimensional variables (unprimed) for length, velocity, temperature and pressure : 

P'. , T=-, p = -  XI Hd T' 12KV Y 
X = a ,  u = - u '  KY AT Hd3 

Here K is a thermal diffusivity 

Using these, our set of equations becomes 

K = k/pf  Cf. 

(6 a-d) 

(7) 

The vertical component of velocity is w, and v is the kinematic viscosity of the 
fluid. The Hele-Shaw Rayleigh number is 

R, = a g A T H d 3 / 1 2 ~ v Y .  ( 1 1 )  

For a uniform porous medium of permeability D ,  the analogous dimensionless 
equations take the form (Palm, Weber & Kvernvold 1972) 

u = -VP+R8%, (12)  

-w = v20, v . u  = 0, (13 ) ,  (14 )  

R = agATHD/Kv. (15) 

where R is Lapwood's (1948) Rayleigh number for a, porous medium 

Equations (8), (9) and (10) are formally identical to (12 ) ,  (13 )  and (14) ,  respec- 
tively. A comparison of ( 1  1 )  and ( 1  5 )  reveals that the Hele-Shaw Rayleigh number 
is identical to the porous-medium Rayleigh number if the Hele-Shaw permea- 
bility is 

By analogy, the critical Hele-Shaw Rayleigh number for a cell with impermeable 
isothermal boundaries should be 4n2, the value predicted by Lapwood (1948) for a 
uniform porous medium with the same boundary conditions. 

DHs = d3/12Y.  (16)  

Physical argument 

The Hele-Shaw cell permeability can also be derived from a simple physical 
argument that compares channel flow with Darcy flow. When the two processes 
are described in physically synonymous terms, (16) is seen to represent the Hele- 
Shaw permeability. 

The fluid velocity averaged over the width of a Hele-Shaw channel is 

u' = ( -d2 /12p)  (VP'+&) = q'/A, (17 )  
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(Lamb 1933, $330) .  Here q‘ is the volume flux of fluid, VP’+pg is the pressure 
gradient driving the flow, and A,  is the cross-sectional area of the channel. 
Darcy’s (1856) observations of water flow through beds of sand led him to con- 
clude that 

where A is the total cross-section of the porous material (solid plus pore spaces) 
and D is the permeability. This statement, known as Darcy’s law, compares 
easily observable quantities (flux per unit area with pressure gradient) while 
combining parameters which are harder to measure or vary throughout the 
sample (e.g. percentage pore area in a cross-section, pore shape, channel tortuo- 
sity) in an empirical property of the porous material, known as permeability. 
Darcy ’s law operationally defines the permeability. 

When the Hele-Shaw cell permeability is defined in a manner consistent with 
Darcy’s law, then one can think of the Hele-Shaw cell as being a porous sample. 
The cell’s walls model the solid matrix, and the gap plays the role of pore spaces. 
The analogy is complete for the case of thermal convection only if the tempera- 
ture field is truly two-dimensional in the Hele-Shaw cell. Then the walls can be 
considered to be in as intimate a thermal contact with the fluid as the solid mater- 
ial of a finely porous matrix. This sets the requirement that the cell be ‘thin’ 
( Y  < H ,  L), and the condition is implicit in (3). Thus 

q‘/A = ( - D/P) (VP’ +Pf2)’ (18) 

A ,  = (d /Y)A.  (19 )  

Combining (17 )  and (19) and comparing with (18) allows us to identify the Darcy 
permeability of a Hele-Shaw cell: 

D,, = d 3 / 1 2 ~ .  (20) [or (1  611 

Bear (1972, p. 164) and Lister (1974) obtained an identical expression for the 
permeability of a horizontally infinite rock slab of thickness H whose porosity 
was due to parallel planar fissures of width d < H and spacing Y < H .  Physically 
the Hele-Shaw cell can be imagined to represent a slice of this rock: the insulated 
outer walls of the Hele-Shaw cell correspond to the planes of symmetry between 
adjacent cracks. 

When the permeability of a Hele-Shaw cell is given by (20), the momentum 
equation for the system is identical to Darcy’s law. This makes laminar flow in a 
Hele-Shaw cell mathematically indistinguishable from such flow in any other 
porous sample. Hence Lapwood’s (1948) instability analysis for a Darcy material 
applies directly to a thin Hele-Shaw cell that meets the criterion of two-dimen- 
sionality of the temperature field. Then the Hele-Shaw Rayleigh number is 
RHs = a g A T H d 3 / 1 2 ~ v Y ,  as was derived above. 

3. Equipment and methods 
We report experiments in two Hele-Shaw cells of length L = 80 cm and height 

H = 4.0 cm. The cross-section of our lower porosity apparatus is shown in figure 
2. Plexiglas windows 0.63 cm thick sandwich a water-filled gap. The width d 
of the slot is maintained by copper shims 0.10 em thick (low porosity cell) or 
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FIGURE 2. Cross-section of the lower porosity Hele-Shaw cell with a magnified view 
of the platinum electrode. 

0-20 cm thick (high porosity cell), which also form the impermeable isothermal 
boundaries of the fluid-6lled region. Aluminium heat sinks double as clamps to 
hold the assembly together. Temperature-regulated water circulates through 
the clamps, thereby controlling the vertical temperature difference across the 
cell to better than 0.05 "C. We record the temperature using copper-constantan 
thermocouples set deep in the aluminium clamps, very near the copper shims. 
Except when photographs are being taken, the whole apparatus is encased in 
ethafoam insulation 5 cm thick. To further reduce thermal interaction with the 
environment, the mean cell temperature is maintained near room temperature. 

The temperature field must be two-dimensional for the Hele-Shaw cell to be a 
valid model of a uniform porous medium. This means that temperature gradients 
across the cell (i.e. along the y axis in figure 1) must be small compared with the 
gradients in the plane of the cell. Since the walls of our Hele-Shaw cells are 
relatively thick, we were concerned about meeting this criterion. Preliminary 
qualitative results have been obtained fcom a cell 80 cm long and 4.0 cm tall, 
with a gap width of about 0- 1 cm but with walls only 0-08 cm thick. The convection 
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FIGURE 3. Photograph of the dye line, 40 s after initiation, in our lower porosity Helc-Sliaw 
cell a t  RHS = 47 (AT = 3,7"C, mean tomporature of 21.2 " C ) .  The vieu IS of t l ic  cvritrd 
16 c m  in an apparatus which i s  80 em long. Tho scalc along thc top edg' 19 i i i  inilliirietres, 
and the vertical line is a reference liric. 
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pattern is indistinguishable from that in the thicker cell: at low Rayleigh num- 
bers the midline vertical velocity profile is essentially sinusoidal with a wave- 
length of 1.6 ~f: 0.2 times the fluid depth. As the Rayleigh number exceeds about 
120 the circulation pattern gradually develops features of boundary-layer flow. 
The cores of the convection half-cells are relatively stagnant, whiIe compara- 
tively narrow upwelling and descending ‘plumes’ define the perimeters. The 
structure, scale and evolution of the patterns are identical for the thin- and thick- 
walled Hele-Shaw cells, so that the validity of results from the thick-walled 
cells is confirmed. 

We have adapted Baker’s (1966) pH-indicator technique of flow visualization 
for use in a Hele-Shaw cell. A platinum wire of small diameter (0.012 cm) is 
embedded in one of the Plexiglas walls of our cell (figure 2). This ensures that the 
wire is in contact with the fluid without interfering with the Poiseuille (channel) 
flow. A voltage pulse (18 V d.c.) a few seconds long is imposed between this 
electrode and the metallic top and bottom boundaries of the fluid-filled region. 
The electron transfer reaction changes the local pH, thereby changing the colour 
of the aqueous thymol blue solution near the wire. This coloured band serves as a 
Lagrangian marker, and reveals the mid-cell flow pattern (figure 3, plate 1) .  
Eventually the coloured band disappears. 

The time-dependent displacement of the dye line from the platinum wire is a 
measure of fluid velocity. Incipient flow ( -= cm/s) can be detected readily; 
this corresponds to a Nusselt number of less than 1.01. To facilitate comparison 
of the velocities observed in the two different cells, the velocity has been non- 
dimensionalized by multiplying by H ~ / K Y .  This form of the velocity scale was 
justified in the formal theoretical section. 

Although Baker’s (1966) flow-visualization technique reveals the convection 
pattern well, there are significant difficulties in obtaining accurate velocity 
measurements in our cell, Since the platinum wire electrode is embedded in one 
of the Plexiglas walls (figure 2), we rely on diffusion to spread the coloured band 
across the width of the cell. When the platinum electrode is the anode, it creates 
an acidic line; when it is the cathode, a basic line is produced. The dominant 
chemical species of interest are therefore hydronium ions and hydroxyl ions; 
their respective diffusion constants in aqueous solution at 20°C are 8.5 x 10-5 
cm2/st and about 5 x cm2/s (Harned & Owen 1950, p. 172). Monte-Carlo 
computer simulation of diffusion into a Poiseuille flow profile has shown that the 
mean velocity of the dye line approaches the mean fluid velocity after 4-7 s of 
dye-line existence. The shorter time applies to H,O+ diffusion and the longer 
time to OH- diffusion. The velocities we report were all measured over a time 
interval which began more than 12 s after the dye line was initiated. Therefore, 
the velocity is not measured a t  z‘ = +H, but rather a t  a distance from this midline 
which increases with the flow velocity. We have corrected the raw velocity data 
to a midline velocity w, by assuming that the vertical velocity w varies with z’ 
according to the relation 

w (2 ’ )  = w, sin (nz’/H). (21) 

t American Institute of Ph.ysics Handbook, 3rd edn, pp. 2-226. McGraw-Hill, 1972. 
25 F L I  79 



386 B. A?. Hartline and C .  R. B. Lister 
17 I I I I 

V 

0 

0 

0 

0 

0 

0 

t. a I - 

Rayleigh number 

FIGURE 4. Linear plot of velocity against Rayleigh number. The fluid velocity has been 
non-dimensiondized by multiplying by H ~ / K  Y .  Solid symbols, Rayleigh number calculated 
from (1 1); open symbols, Rayleigh number calculated from (23). , 0, from experimental 
apparatus (figure 2) with d = 0.10 cm and Y = 1.37 cm; v, V ,  from Hele-Shaw 
cell with d = 0.20 cm and Y = 1.47 cm. 

This is consistent with the relevant differential equations when w is small, and 
probably remains representative of the vertical velocity distribution until 
boundary-layer flow is well established. 

4. Experimental verification of expression for Rayleigh number 
To test the validity of ( 11) and (16) we have compared the Rayleigh number a t  

which instability first occurs with Lapwood’s (1948) prediction of 4n2. In  figure 
4, the non-dimensional fluid velocity is plotted against Rayleigh number. This 
provides a graphic demonstration of the dramatic onset of convection. 

The Rayleigh numbers for the solid symbols were calculated from (1 1).  These 
data indicate a critical Rayleigh number of 40 -t 2, in excellent agreement with 
Lapwood’s (1948) theory. The triangles and circles (data from Hele-Shaw cells 
with porosities of 0-136 and 0.073, respectively) lie on the same curve, which is 
what onewould expect if theNusselt number were a unique function of Rayleigh 
number and independent of the porosity. 

The open symbols incorporate the same velocity measurements, but the 
traditionally accepted expression for Hele-Shaw cell permeability (Elder 1965; 
Bories 1970; Horne & O’Sullivan 1974; Williams et al. 1974)’ 
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1 2 5 10 20 50 100 200 

FIGURE 5. Logarithmic graph based on a Rayleigh number calculated from (11) for the 
complete experimental range of the Hele-Shaw cell with d = 0.10 cm and Y = 1.37 cm. 

Circles. Plot of non-dimensional velocity against supercritical Rayleigh number 
(RHs-40). The least-squares line has a slope of 0.53. The error we associate with each 
velocity point represents the worst possible error in measuring the displacement, divided 
by the time interval during which the measurement was made. As the fluid velocity 
increases, the measurement time interval decreases, so the error increases with Rayleigh 
number. 

Triangles. Plot of non-dimensional velocity against Rayleigh number. The least-squares 
line through the last seven points has a slope of 1.06. The error bars indicated for the 
circles apply to the corresponding triangles. 

is used to calculate the Rayleigh number: 

R&S = agATHd2/12~v. (23) 

Data for the two porosities indicate different critical Rayleigh numbers (about 
300 and 500)’ neither of which agrees at all with Lapwood’s (1948) predicted 
value. Therefore (23) cannot be the correct formula for the Hele-Shaw Rayleigh 
number and (22) does not represent the Darcy permeability of a Hele-Shaw cell. 

5. Discussion 
Numerical and experimental studies of heat transfer in porous media have 

diverse findings. Elder (1967) obtained experimental results which indicate that 
the Nusselt number N increases linearly with the Rayleigh number. Asiz & 
Combarnous (1970) report the results of a numerical calculation which suggests 
that N cc Rt. 

25-2 



388 B.  K .  Hartline and C. R. B. Lister 

The convective heat transfer depends on the fluid velocity, the temperature 
distribution in the fluid, and the geometry of the convection cells. Without 
thoroughly surveying these three aspects of the flow, we can only speculate about 
the implications of our velocity measurements for the Nusselt number. 

As the flow velocity increases, the time it takes a packet of fluid to complete a 
circuit of a half-cell decreases. The fluid spends less time being heated and cooled 
near the bottom and top boundaries, so the heat transfer into the fluid should 
becomelessefficient. Therefore, in order for theNusselt number to be proportional 
to the Rayleigh number, the flow velocity must increase faster than linearly with 
Rayleigh number. 

Figure 5 suggests that, although the velocity does not increase linearly with 
Rayleigh number at low Rayleigh numbers, it may approach linearity at higher 
Rayleigh numbers. This may be in substantial agreement with Elder (1967). 
Pigure 5 also shows that in the range studied the data are compatible with 

w, cc (R - 40)*, (24) 

although there is no good physical reason for such a dependence. Hence it is 
worthwhile to note that a better fit to our data is obtained with 

w,cc (R2 - 402)*. (25) 

This is a hyperbola which behaves as (R- 40)* a t  low Rayleigh numbers, but 
which approaches being linear with R at higher Rayleigh numbers. 

6. Conclusions 
Recent workers using Hele-Shaw cells to model thermal convection in a porous 

slab have mistakenly adopted Ad2 as the permeability (Elder 1965; Bories 1970; 
Williams et al. 1974; Horne & O’Sullivan 1974). The error introduced by basing 
the Rayleigh number on this permeability is a factor equal to the reciprocal of the 
porosity. Since commonly used Hele-Shaw cells have porosities of about 0.3, the 
calculated Rayleigh number is too large by only a factor of around 3. This is not 
particularly serious when the cells are used primarily to visualize flow patterns, as 
these change only weakly with Rayleigh number. 

By properly identifying the Hele-Shaw permeability as d3/12 Y we have demon- 
strated that the Hele-Shaw cell can be a powerful tool for quantitative study of 
two-dimensional flow in porous media. Not only can the convection pattern be 
observed, but precise velocity measurements are feasible using Baker’s (1966) 
pH-indicator method. Infrared photography, schlieren photography or inter- 
ferometry allows visualization of the temperature distribution. Direct tempera- 
ture measurements can be made by sensors on the outside of the cell walls without 
interfering with the flow. All results can be correlated accurately with the Ray- 
leigh number, so meaningful generalizations about thermal convection in porous 
samples can be made. 
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